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This paper describes practical algorithms and experimental re-
sults concerning illuminant classification. Specifically, we review
the sensor correlation algorithm for illuminant classification and
we discuss four changes that improve the algorithm’s estimation
accuracy and broaden its applicability. First, we space the classi-
fication illuminants evenly along the reciprocal scale of color tem-
perature, called “mired,” rather than the original color-tempera-
ture scale. This improves the perceptual uniformity of the illumi-
nant classification set. Second, we calculate correlation values be-
tween the image color gamut and the reference illuminant gamut,
rather than between the image pixels and the illuminant gamuts.
This change makes the algorithm more reliable. Third, we intro-
duce a new image scaling operation to adjust for overall intensity
differences between images. Fourth, we develop the three-dimen-
sional classification algorithms using all three-color channels and
compare this with the original two algorithms from the viewpoint of
accuracy and computational efficiency. The image processing al-
gorithms incorporating these changes are evaluated using a real
image database with calibrated scene illuminants.

Keywords—Color balancing, color constancy, color rendering,
illumination estimation, sensor correlation method.

I. INTRODUCTION

We judge the color appearance of an object using the
light reflected from that object and nearby objects. The
spectral composition of this reflected light, sometimes
called thecolor signaldepends on the surface reflectance of
the objects and the spectral composition of the illuminating
light. Humans have some ability to discount the illumination
when judging object appearance. This ability, calledcolor
constancy, demonstrates at least a subconscious ability to
separate the illumination spectral-power distribution from
the surface reflectance function within the color signal [1].

Algorithms capable of distinguishing the surface and
illuminant components have applications in several fields
and illuminant estimation theory has a long history. In the
fields of color science and computer vision, a large number
of algorithms for separating of surface and illumination
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components have been proposed [2]–[25]. These algorithms
can be grouped into several approaches. These include
methods based on general linear models [2], [4], [7], [10],
[25], reliance on highlights and mutual reflection [6], [9],
[12], [14], methods based on multiband and spectral images
[8], [13], [19], methods using multiple views [15]–[17],
illuminant mapping approach [11], [21]–[23], and Bayesian
and probabilistic approach [18], [20], [24].

These algorithms have been developed based on different
motivations in various fields. In image processing, illumi-
nant estimation algorithms are used to improve object seg-
mentation by identifying lightness changes due to illuminant
shading and highlights [26]–[31]. In color image reproduc-
tion, digital cameras often use algorithms to estimate implic-
itly the color of the scene illumination [32]–[35]. This esti-
mate is used so that data acquired under one illuminant are
rendered for viewing under a second illuminant [36], [37]. Fi-
nally, in image database retrieval, objects must be identified
on the basis of color appearance. Estimating the perceived
appearance accurately requires an estimate of the scene illu-
minant [38]–[41].

Nearly all illuminant estimation methods assume that there
are significant physical constraints on the possible illuminant
spectra, for example that a low-dimensional linear model can
model the illuminants and surface reflectance functions. This
assumption is necessary because accurate spectral character-
ization of an arbitrary illumination is impossible using an
input device that obtains only three spectral samples. From a
mathematical point of view, the estimation problem is under-
determined in the sense that there are more unknown scene
parameters than there are available sensor data and it is non-
linear in the sense that unknown scene parameters for illumi-
nant and surface are multiplied together to produce the values
of the sensor outputs [19].

A practical factor compensates for the inescapable math-
ematical limits on illuminant spectral-power distribution es-
timation is this: in most imaging conditions the illuminant
is one of several likely types, such as the variety of daylight
and indoors conditions. This makes it possible to design al-
gorithms that classify amongst possible illuminants rather
than estimate from a continuous set of illuminants. Classi-
fication, rather than estimation, simplifies data processing,
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stabilizes computation, and is appropriate for many applica-
tions including photography [22].

In previous work [42], [43], we introduced thesensor cor-
relation algorithm for classifying illuminant color tempera-
ture and we tested the method using a database of calibrated
natural images. Here, we introduce changes that improve the
algorithm’s estimation accuracy and broaden its applicability
to a variety of scenes. These improvements are confirmed
using a data set of natural images measured under different
illuminants. Here, we describe four main improvements that
we have explored.

First, the color-temperature scale does not correspond to
perceived color differences, so that estimation error does
not correspond closely to perceived error [43]. To solve this
problem, we describe a new method of estimating illuminant
classification errors using a reciprocal color-temperature
scale. The unit of this reciprocal temperature scale is the
mired (10 K ); a given small interval in this scale is
equally perceptible, across a wide range of color temper-
atures. Therefore, an array of illuminant gamuts on the
reciprocal color temperature is effective from the viewpoint
of perceptual illuminant classification, rather than physical
illuminant classification.

Second, in the original work, the pixel colors in the mea-
sured image were correlated with a reference gamut. Con-
sequently, the resulting correlation depended on the specific
pixels in the image more than their range. In some instances
that we describe below, this provided unsatisfactory solu-
tions. Here, we propose instead to compute the correlations
between the gamuts of the image pixels and the illuminants.
We define the image gamut as the convex hull of the set of
(R, B) pixel values. The correlation is calculated between
the gamuts of a given image and each of the reference illu-
minants gamuts. This gamut-based computation appears to
make unique illuminant classification more reliable.

Third, we describe a new image scaling operation to ad-
just for intensity differences between images. The original
sensor correlation method relies on the fact that bright image
regions contain more information about the illuminant than
dark regions. The dark image regions are noisy and could fall
in any of the illuminant gamuts. In our original investigation
on an image database, every image contained, more or less,
bright neutral surfaces; illuminant information is reliable in
such bright surfaces. However, if an image contains only dark
chromatic surfaces, the image intensities may be scaled up
excessively. Here, we describe an improved scaling operation
whose performance is independent of brightness and color-
fulness of the image.

Fourth, the original illuminant classification algorithms
use only two of the three color channels of digital camera.
This limitation is lifted at the cost of increased computation.
We develop a three-dimensional (3-D) algorithm that uses all
the color channels and examine its performance.

II. I LLUMINANT SET AND COLOR TEMPERATURE

Blackbody radiators are used frequently to approximate
scene illuminants in commercial imaging and we classify

Fig. 1. Spectral power distributions of blackbody radiators.

scene illuminants according to their blackbody color temper-
ature. The color temperature of a light source is defined as the
absolute temperature (in Kelvin) of the blackbody radiator.
For an arbitrary illuminant, the correlated color temperature
is defined as the color temperature of the blackbody radiator
that is visually closest to the illuminant. The correlated color
temperature of a scene illuminant can be determined from the
Commission Internationale de l’Eclairage (CIE) ( ) chro-
maticity coordinates of the measured spectrum by using stan-
dard methods [44, p. 225]. A simple equation to calculate the
correlated color temperature is given in [45]. The equation
of the spectral radiant power of the blackbody radiators as a
function of temperature T (in Kelvin) is given by the formula
[44]

(1)

where W/m and
W/K and is wavelength (m). The spectral power dis-
tributions corresponding to color temperatures spanning
2500–8500 K are shown in Fig. 1. The set of blackbody
radiators includes sources whose spectral power distribu-
tions are close to CIE standard lights commonly used in
color rendering, namely, illuminant A (an incandescent
lamp with 2856 K) and (daylight with a correlated
color temperature of 6504 K). Sources with lower color
temperatures tend to be redder, while those with higher color
temperatures are bluer.

Differences in color temperature do not correspond to
equal perceptual color differences. Judd’s experimental
report [46] suggested that visually equally significant
differences of color temperature correspond more closely
to equal differences of reciprocal color temperature. The
unit on the scale of microreciprocal degrees (10 ) is
called “mired.” This unit is also called “remek,” which is the
contraction for a unit of the International System of Units
(SI), the reciprocal megakelvin ( ). Judd determined
that color-temperature difference corresponding to a just
noticeably different (JND) chromaticity difference over the
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Fig. 2. Planckian locus with the scales of color temperature and
reciprocal color temperature in the (u ; v ) chromaticity plane.

range of 1800–11 000 K. Let be the JND chromaticity
difference corresponding to the color-temperature difference

. He derived the JND color temperature of the ratio
as a function of color temperature by the empirical

relation

(2)

This difference is represented by reciprocal color tempera-
ture as

(3)

This result means that a just noticeable difference in recip-
rocal color temperature is 5.5 mired. The blackbody radiators
are written as a function of reciprocal temperatureas

(4)

where W/m and
W/mired. In Fig. 1, the spectral-power distributions of the
blackbody radiators are represented at the reciprocal color
temperatures, spanning mired (8500 K) to

mired (2500 K) in 23.5 mired increments.
These numbers are 117.65, 400.00, and 23.529 in the five
significant digits. Fig. 2 shows the Planckian locus (chro-
maticity locus of blackbody radiators) in the ( ) plane
of the CIE 1976 UCS chromaticity diagram, where the locus
is segmented in two ways of equal color-temperature steps
and equal reciprocal color-temperature steps. Note that small
intervals in reciprocal color temperature are more nearly per-
ceptually equal than small intervals in color temperature.

III. D EFINITION OF ILLUMINANT GAMUTS

Illuminant classification algorithms use a set of reference
illuminant gamuts to define the anticipated range of sensor
responses. To create these gamuts, we used a database of
surface-spectral reflectances provided by Vrhelet al. [47]

Fig. 3. Data points corresponding to the Vrhel and the Macbeth
ColorChecker imaged at 182 mired (5500 K) are superimposed
on the RB sensor plane.

together with the reflectances of the Macbeth ColorChecker.
The image data were obtained using a Minolta camera
(RD-175) with known sensor responsivities. Hence, the
sensor responses can be predicted using

(5)

where is the surface-spectral reflectance function,
, , and are the spectral responsivities, and

is the scene illuminant. The Minolta camera can be
operated in one of two modes. In one mode, appropriate for
imaging under tungsten illumination (say, illuminant A), the
blue sensor gain is high. In a second mode, appropriate for
imaging under daylight (D65), the blue sensor gain is much
lower. Operating in the high blue sensor gain improves
the performance of the scene-illuminant classification.
Hence, all analyses throughout this paper were performed
in this mode. The example images shown in figures below
have been color balanced only for display purposes. The
scene illuminants for classification are blackbody radiators
spanning 118 mired (8500 K) to 400 mired (2500 K) in
23.5-mired increments, as shown in Fig. 1.

The illuminant gamuts are defined on the RB plane.
This sensor plane is a reasonable choice for the blackbody
radiators because the illuminant gamuts differ mainly
with respect to this plane. The boundary of the illuminant
gamut is obtained from the convex hull of the set of (R,
B) points. For example, Fig. 3 shows the set of data points
corresponding to the Vrhel and the Macbeth ColorChecker
superimposed on the illuminant gamut for the particular
temperature of 182 mired (5500 K). The region enclosed
with the solid curves represents the illuminant gamut. Fig. 4
shows the illuminant gamuts of the blackbody radiators for
13 successive temperatures in the RB plane in two ways. In
Fig. 4(a), gamuts are depicted at equal spacing in reciprocal
color temperatures, while in Fig. 4(b), gamuts are depicted
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(a)

(b)

Fig. 4. Illuminant gamuts for blackbody radiators for 13
successive temperatures in the RB sensor space. Gamuts are
depicted at equal spacing in (a) reciprocal color temperatures and
(b) color temperatures.

in equal spacing of color temperatures, spanning from
2500 K to 8500 K in 500 K increments. Note that 13 gamuts
are arranged in the same temperature range [2500, 8500 K]
in both figures. The illuminant gamuts separated by equal
reciprocal color- temperature steps are better separated than
those separated in equal color-temperature steps.

Experimentally, we have found that many cameras exhibit
the same good spacing in the RB plane as shown in Fig. 4(a).
We use 23.5-mired increments to have the same number of
gamuts in the common range [2500, 8500 K] as we used
in previous work [42], [43]. In this way, we can compare
the performance of illuminant classification between the two
scale systems.

A gamut correlation coefficient is a useful figure of merit
to evaluate the ability of different gamut classes to separate
illuminants. The gamut correlation coefficient can be com-
puted between a pair of illuminant gamuts using the formula

Fig. 5. Gamut correlation coefficients between adjacent
illuminant gamuts. Correlation is approximately constant in mired
steps, but not color-temperature steps.

, where and are the areas ofth
and th gamuts and is the area of overlap between two
gamuts. Fig. 5 shows the gamut correlation coefficients be-
tween adjacent gamuts measured with equal color-temper-
ature spacing and equal mired spacing. The constant corre-
lation level in mired confirms that the gamuts in reciprocal
color temperature are uniformly separated.

IV. COMPUTATIONAL METHODS

A. Pixel-Based Illuminant Classification

The original sensor correlation illuminant classification al-
gorithm uses a correlation between image data and illumi-
nant gamuts. The RB plane is divided into a regular grid ()
with small equal-sized intervals (usually 256256 points).
The illuminant gamuts are represented by setting a
value 1 or 0, depending on whether or not the cell falls in-
side the convex hull. Image data are mapped into an array
of cells with the same size as , essentially converting
the image to a two-dimensional (2-D) binary map (with pos-
sible holes). The correlation between an image and each of
the illuminant gamuts can be computed by simply summing
the binary values on the gamut array corresponding to
the (R, B) pixel values of the image RGB. This correlation
is a very quick binary computation without multiplication or
conditional statements. A program for an efficient correla-
tion computation is provided in [43].

We can demonstrate the method using a simulation based
on the Macbeth ColorChecker. First, we measured the
surface-spectral reflectances for 24 color patches of the
Macbeth ColorChecker. The image data at 182 mired (5500
K) were calculated from (5) with the measured reflectances
and the blackbody radiator. Then, Gaussian random numbers
with the mean of zero and the standard deviation of 1%
were added to the RGB values to simulate observational
noise. Fig. 6(a) shows the synthesized image of the Macbeth
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(a)

(b)

Fig. 6. (a) Synthesized image of the Macbeth ColorChecker at
5500 K. (b) Plot of the (R, B) pixel values on the gamuts.

ColorChecker at 182 mired (5500 K). Fig. 6(b) shows (R,
B) pixel values superimposed on the illuminant gamuts.
In the figure, the data points vary slightly because of the
added noise. The large sensor values, which fit selectively
the gamut near 188 mired, fall outside all of the illuminant
gamut classes and, thus, do not contribute to the pixel-based
correlation for any illuminant gamut , .
Fig. 7 shows the correlation function between the image
pixels and each of the illuminant gamuts. The peak correla-
tion is at a reciprocal temperature of 188 mired (5312 K),
which is selected as the estimate.

This pixel-based correlation depends greatly on the
specific color elements of an image and not on their range:
changing the position of image data points within a reference
gamut does not change the correlation value. This can pose
a problem when there are only a few color samples are
sparsely scattered in the RB plane and the binary histogram
of (R, B) pixel values has many holes. This is illustrated
by Fig. 8(a), which shows the synthesized image consisting
of 18 chromatic patches of the Macbeth ColorChecker; for
this example the achromatic patches have been removed (cf.
Fig. 6). Fig. 8(b) shows the (R, B) pixel values on the gamut,
where the maximal value of the intensity over the image is

Fig. 7. Correlation function between image pixels and illuminant
gamuts for the synthesized Macbeth image.

(a)

(b)

Fig. 8. (a) Synthesized image of the chromatic color patches
for the Macbeth image. (b) Plot of the (R, B) pixel values on the
gamuts.

normalized to 255. The clusters of pixels for chromatic color
patches are distributed in the RB plane in a way that makes
selecting the proper gamut very difficult.

This visual impression from Fig. 8 is confirmed by the cor-
relation function in Fig. 9. The maximum correlation should
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Fig. 9. Correlation function between image pixels and reference
illuminant gamuts for Fig. 8.

occur when all image pixels fall in the corresponding illumi-
nant gamut and the correlation should decrease as the gamut
color temperature differs from the real temperature. How-
ever, an image comprising only the chromatic patches has
very poor properties for the original illuminant classification
algorithm. Furthermore, we repeated the above simulation
experiment at different noise levels. The peak of the corre-
lation function fluctuated varies significantly with noise in
these cases.

B. Gamut-Based Illuminant Classification

1) Image Gamut:To reduce the problem caused by
sparse histograms, we propose using the convex hull of the
image data, rather than the data themselves, to determine an
image gamut in the RB plane. In this modified calculation
we compute the correlation value between the image and
illuminant gamuts.

The image gamut defines an entire region of possible colors
in the RB plane, which is predicted from the observed image
data under a certain illuminant. Because the convex hull is the
smallest convex set of pixel values, the extreme colors, such
as the brightest colors and the most saturated colors in the ob-
served image, define the image gamut [11]. In fact, since a set
of the brightest and the most saturated colors approximates
the convex hull of image pixels, the extreme colors that de-
fine the range of the data are the most important data for spec-
ifying the image gamut. The interior points are irrelevant to
the image gamut; even if some interior colors are deleted or
new colors are added to the inside, the corresponding illumi-
nant gamut is unchanged [11].

Theoretically, the interior points of the image convex hull
might be considered as implicit image data. To see why,
consider the image gamut shown in Fig. 10. Five points

form the convex hull defining the image
gamut on the RB plane; the interior points can be viewed
as additive mixtures of these points. Now, suppose that two
points and are associated with surface reflectance

Fig. 10. Relationship between image pixels and the image gamut.

functions and . The interior points along the line
connecting these points could arise from a surface with
reflectance

(6)

where and are weights with constraints ,
.
Finite-dimensional linear models are frequently used to

describe the set of possible reflectance functions

(7)

where is a set of basis functions
for reflectance and is a set of weighting coefficients.
Hence, it is likely that these interior points are present within
the linear model of surface reflectance approximations, even
if that point is not present in the image itself.

The gamut-based correlation differs from the pixel-based
correlation in that the calculation presumes that interior
points might all have been present in the scene. A practical
correlation value is computed from the area of the gamuts as

(8)

where is the area of an image gamut, are the area of
the th illuminant gamut, and is the area of the overlap
between the image and illuminant gamuts.

Figs. 11 and 12 illustrate the improvement we have ob-
served with the gamut-based correlation. Fig. 11 shows the
gamut for the image shown in Fig. 8, where the solid curve
represents the convex hull of (R, B) values and the region
surrounded by this curve represents the image gamut. Fig. 12
shows the correlation function between the image gamut and
each of the illuminant gamuts. The function clearly indicates
a unique illuminant, unlike the pixel-based function in Fig. 9.
The peak correlation indicates an illuminant of 235 mired
(4249 K). The gamut-based classification is stable although it
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Fig. 11. Convex hull of (R, B) values and image gamut for the
image of chromatic patches in Fig. 8.

Fig. 12. Correlation function between the image gamut and each
of the illuminant gamuts for Fig. 8.

is computationally more expensive than the pixel-based clas-
sification.

2) Image Scaling:The sensor correlation method re-
quires a scaling operation that compensates for intensity
differences between images. This scaling operation is equiv-
alent to placing a neutral density filter in the light path or
adjusting the exposure duration. Scaling preserves the shape
of the image gamut and the relative intensity information
within an image. To scale the data, we defineas the th
pixel intensity

(9)

and let be the maximal value of the intensity over the
image. Then, to scale the intensity across different images,
we divide the sensor RGB values by the maximum intensity

(10)

Fig. 13. Convex hulls of the scaled (R, B) values with different
normalization parameterk levels.

Fig. 14. Correlation functions for different normalization
parameter levels.

Bright image regions contribute much of the illuminant
information. This is especially true if nearly white surfaces
are present in the scene in which case these image regions
mainly determine the color-temperature estimate. However,
if there is no bright surface, the scaling operation converts
dark surfaces into bright image regions and the estimation
accuracy decreases. Hence, the selection of a proper scaling
parameter is an important element of the algorithm.

In the initial formulation of the sensor correlation algo-
rithm, we chose the scaling parameter based on a set of prop-
erties of the brightest pixels. Since then, we have discovered
a better normalization method that is illustrated in Figs. 13
and 14. Fig. 13 shows the convex hulls of the (R, B) pixel
values of the image in Fig. 8. These convex hulls are each
scaled by a different normalization parameter. A set of
these image gamuts were used to generate the correlation
functions shown in Fig. 14; each curve shows the function
for a different parameter. To select a value, we compute
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Fig. 15. Illuminant classification comparisons of the pixel- and
gamut-based methods.

all of these gamuts and then choose the peak correlation over
all the functions. In this example, the peak correlation occurs
for and a reciprocal color temperature of 212 mired
(4722 K). This normalization procedure, which we apply to
the gamut, can also be applied to the image data [23].

To investigate the overall performance of the gamut-based
illuminant classification, we performed a computer ex-
periment. Using 18 chromatic patches of the Macbeth
ColorChecker, we generated 61 images under different
illuminants by changing the color temperatures from
2500 K to 8500 K in 100 K increments. Fig. 15 compares
the illuminant classification results using the pixel- and
gamut-based classification methods. The horizontal axis
represents the target color temperature (mired) and the
vertical axis represents the estimate. A perfect classifier
without error represents a staircase version of the broken
line. The stair step error is due to the sampling every 23.5
mired. Therefore, the finer sampling becomes the smaller
error. The property of consistent bias is just a function of the
Macbeth color samples. The estimates are not biased for all
images. In this experiment, a yellow patch in the Macbeth
samples affects strongly the bias of the estimates. It is clear
that the gamut-based classification method outperforms the
pixel-based method.

C. Three-Dimensional Illuminant Classification

The original sensor correlation method uses only two of
the three color channels. This limitation can be lifted at the
cost of increased computation. Fig. 16 shows a collection of
the 3-D illuminant gamuts in an RGB sensor space. These
gamuts are obtained from the convex hull of the set of (R, G,
B) points calculated using the reflectance database and the
blackbody radiator from 118 mired (8500 K) to 400 mired
(2500 K) in 23.5 increments. The illuminant gamuts differ
only a little with respect to the G axis. Moreover, the gamuts
move monotonically as R or B increases, but they do not
move monotonically as G increases. Mathematically, the
gamuts are a type of two-valued function with respect to G.

Fig. 16. 3-D illuminant gamuts in RGB sensor space.

Fig. 17. Illuminant classification comparison of the 2-D and 3-D
gamut-based algorithms.

Fig. 18. Algorithm flow for the gamut-based illuminant
classification.
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(a)

(b)

Fig. 19. (a) Image acquired outdoors under a daylight. (b) Pixel
distribution with illuminant gamut.

Moreover, the gamut size varies with color temperature.
Inspecting the projected GR gamuts, we found that the
118-mired gamut contains most of the other gamuts and
there is little separation between gamuts at high color tem-
perature of blue region. Hence, the inclusion of G channel
does not lead to significantly better classification.

In order to evaluate the 3-D classification algorithm, a
computer experiment was performed using 61 images of 18
chromatic patches of the Macbeth ColorChecker at different
color temperatures from 2500 K to 8500 K in 100 K incre-
ments. Two types of 2-D and 3-D gamuts were used for il-
luminant classification. Fig. 17 shows the classification re-
sults based on the 2-D and 3-D gamut-based classification al-
gorithms. The 45 line represents perfect classification. The
3-D algorithm estimates are closer to the exact temperatures
than the 2-D algorithm estimates. However, the computation
time of the 3-D algorithm is 30 times that of the 2-D algo-
rithm, mainly due to the long time required to calculate the
3-D convex hull. Therefore we have decided that the 2-D al-
gorithm is effective from the overall viewpoint of accuracy
and computation.

Fig. 20. Correlation functions for Fig. 19.

Fig. 21. Estimation results of the scene-illuminant spectrum.
Solid curve represents the estimated spectral distribution of the
blackbody radiator, the dashed curve represents the measured
illuminant, and the short-long dashed curve represents the estimate
by the previous method in [43].

D. Image Processing

Fig. 18 illustrates the algorithm flow for the gamut-based
illuminant classification. First, in the preprocessing step, illu-
minant gamuts of blackbody radiators from 118 to 400 mired
in 23.5-mired increments are created. Also, the convex hull
of the image (R, B) values is determined. It is important that
this gamut be stable with respect to various noise effects such
as those that might be caused by a single bad pixel. To insure
this stability, we perform some simple preprocessing.

First, to guarantee that the image gamut is reliable, we re-
move noisy pixels during the preprocessing by identifying
isolated pixels in the (R, G, B) volume. Let ( )
be the color point of a pixel. We investigate connectivity of
( ) to 26 nearest neighbors at coordinates

excluding
( ) itself. If the point ( ) has no or only

50 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 1, JANUARY 2002



Fig. 22. Set of images of indoor scenes under a halogen lamp.

one connection to its neighbors, the pixel is identified as iso-
lated and it is excluded.

Second, we exclude saturated pixels in the original image.
Ideally, if a pixel has one value of RGB equal to 255, it
should be thrown out as a saturated pixel. Actually, pixels
with values are regarded as saturated in the present
camera system.

Following this preprocessing, the entire image is normal-
ized so that the brightest pixel has the maximum intensity
255. The convex hull of these normalized values is deter-
mined on the RB plane. Once the original image gamut is
fixed, the correlation computation is repeated between the
image gamut, scaled with a different value of the param-
eter and illuminant gamuts ( ). It is not
necessary to repeat the image normalization or the deter-
mination of the corresponding convex hull with different

values.
Finally, we determine the illuminant and the pa-

rameter , which give an overall maximum of the cor-
relation function. The scene illuminant is classified to be
a blackbody radiator within a temperature interval of 23.5

mired. The value of is the most suitable for
selecting one gamut from 13 illuminant gamuts. As the
number of gamuts increases, a smaller value ofshould
be used.

V. EXPERIMENTAL RESULTS

We have evaluated the proposed algorithm using a data-
base of images that include both indoor and outdoor scenes
[48]. As an example, the gamut-based illuminant classifica-
tion algorithm is applied to the image in Fig. 19(a). This
image was acquired outdoors under daylight with correlated
color emperature of 5371 K. The scaled (R, B) values are
plotted in Fig. 19(b), where the image gamuts are depicted
for two scale factors and . Fig. 20 shows
the correlation functions between the image gamuts for

and the illuminant gamuts in the interval of 23.5
mired. Comparing across categories and scale factor levels,
the overall peak correlation is at a color temperature of 188
mired (5312 K) for 0.8. The difference from the mea-
surement is 2.1 mired. The solid curve in Fig. 21 represents
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Fig. 23. Pixel distributions and image gamuts for the indoor images.

the estimated spectral distribution of the blackbody radiator.
The dashed curve shows the spectral-power distribution of
a direct spectroradiometric measurement made by placing
a reference white in the scene; there is a good agreement
between the estimate and the measurement. The accuracy
is better than that of the original sensor correlation method
(short–long dashed curve), which has an estimated tempera-
ture of 4500 K and an error of 36 mired.

Fig. 22 shows a set of 12 images of scenes photographed
under a halogen lamp in our laboratory. This illuminant has
a correlated color temperature near 3100 K. Fig. 23 depicts
a whole set of the pixel distributions and the image gamuts.
The numerical results of illuminant classification are listed in
Table 1. The estimate of scene illuminant is expressed in the
color-temperature unit (Kelvin) and the difference between

Table 1
Illuminant Classification Results for the Indoor Images
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Fig. 24. Outdoor scenes in Kyoto used in the database.

the estimate by the image and the direct measurement by the
spectroradiometer is expressed in the reciprocal color-tem-
perature unit (mired). The proposed modifications improve
the estimates for all images except image 5, where bright tex-
ture on the shirt has random fluctuations of pixels. The differ-
ence between estimates and direct measurement is 6.3 mired
on average, while the difference for the original method is
9.4 mired.

Fig. 24 shows a set of images acquired in Kyoto in spring.
The pixel distributions and the illuminant gamuts are de-
picted in Fig. 25. Most of the pixel distributions of the out-
door scenes form linear clusters in the RB plane, so that the

convex hulls fit the respective pixel distributions well com-
pared to the indoor scenes in Fig. 23. The numerical classifi-
cation results are shown in Table 2. The direct measurements
of color temperature in outdoor scenes vary over time and
with the viewing direction. The measurements for the scenes
in Kyoto ranged widely from 4843 to 6038 K. The color-tem-
perature estimates of the scene illuminants differ by only 4.7
mired.

The spectral distribution error of the illuminant can be
expressed as CIELAB color difference with respect to the
average surface (see [43] for the details). The average er-
rors for the proposed method are for the
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Fig. 25. Pixel distributions and image gamuts for the outdoor images.

indoor scenes and for the outdoors scenes.
Finally, the performance was compared with a classical al-
gorithm based on the gray-world assumption. In this case,
the averages of the RGB sensor values for the entire image

were used for illuminant classification. The color-temper-
ature estimation error increased from less than 5 mired to
11.3 mired for the indoor scenes and 32.2 mired for the
outdoors scenes.
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Table 2
Illuminant Classification Results for the Outdoor Images

VI. CONCLUSION

We have described extensions of the sensor correlation
method for illuminant classification and discussed several
methods that improve the accuracy and scope of the algo-
rithm. First, the reciprocal scale of color temperature should
be used to achieve perceptually uniform illuminant classifi-
cation. Second, we proposed that a gamut-based correlation
value should be calculated between an image gamut and the
reference illuminant gamuts in order to use the most relevant
information when selecting an illuminant. Third, we have
proposed a new normalization operation that makes classifi-
cation performance independent of image intensity. Fourth,
we have developed the 3-D classification algorithms using all
three-color channels. The first three changes all improve al-
gorithm performance. The comparison of the 2-D and 3-D al-
gorithms shows little improvement in accuracy, so that for ef-
ficiency we believe the 2-D algorithms are more effective. Fi-
nally, the applicability of the improved algorithm was shown
using an expanded database of real images.
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